metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaquacopper(II)]-{μ-4,4'-[1,4-phenylenebis(methyleneimino)]dibenzoato}] monohydrate]

Qiu-sheng Wang and Jie Ouyang*

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China Correspondence e-mail: ouyang2162_cn@sina.com

Received 21 June 2008; accepted 30 July 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.140; data-to-parameter ratio = 17.2.

The asymmetric unit of the title polymeric compound, $\{[Cu(C_{22}H_{18}N_2O_4)(H_2O)_2]\cdot H_2O\}_n$, contains a Cu ion situated on an inversion center, half of a centrosymmetric 4,4'-[1,4-phenylenebis(methyleneimino)]dibenzoate ligand, a coordinated water molecule in a general position and an uncoordinated water molecule situated on a twofold rotation axis. The distorted octahedral coordination geometry of the Cu^{II} ion is formed by six O atoms. The –NH– groups of the ligand are involved in intramolecular N–H···O hydrogen bonds, while the water molecules participate in the formation of a three-dimensional supramolecular framework *via* intermolecular O–H···O hydrogen bonds.

Related literature

For properties of 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications, see: Yamaguchi *et al.* (1991); Imhof & Göbel (2000). For supramolecular networks in related structures, see: Jing *et al.* (2006).

Experimental

Crystal data $[Cu(C_{22}H_{18}N_2O_4)(H_2O)_2] \cdot H_2O$ $M_r = 491.98$ Monoclinic, P2/c a = 16.127 (6) Å b = 5.1535 (17) Å

c = 13.405 (8) Å $\beta = 92.76$ (2)° V = 1112.8 (8) Å³ Z = 2Mo *K* α radiation $\mu = 1.03 \text{ mm}^{-1}$ T = 291 (2) K

Data collection

Rigaku R-AXIS RAPID	10220 measured reflections
diffractometer	2534 independent reflections
Absorption correction: multi-scan	2008 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.040$
$T_{\rm min} = 0.913, \ T_{\rm max} = 0.932$	

 $0.09 \times 0.08 \times 0.07~\mathrm{mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 147 parameters $wR(F^2) = 0.140$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.49$ e Å⁻³2534 reflections $\Delta \rho_{min} = -0.49$ e Å⁻³

Table 1

Selected bond lengths (Å).

Cu1-O1	1.992 (3)	Cu1-O3	2.582 (2)
Cu1-O2	2.006 (2)		

l able 2			
Hydrogen-bond	geometry	(Å,	°).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O3	0.84	2.00	2.676 (3)	137
$O1-H1A\cdots O3^{i}$	0.85	2.17	3.011 (3)	174
$O1-H1B\cdots O4^{ii}$	0.85	2.28	3.104 (3)	164
$O4-H4A\cdots O2^{iii}$	0.85	2.03	2.855 (3)	163

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z + 2; (iii) x, y + 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 20771082).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2427).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Imhof, W. & Göbel, A. (2000). J. Organomet. Chem. 610, 102-111.

Jing, L.-H., Zhang, H.-X. & Gu, S.-J. (2006). Acta Cryst. E62, 04583–04584.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yamaguchi, K., Matsumura, G., Kagechika, H., Azumaya, I., Ito, Y., Itai, A. & Shudo, K. (1991). J. Am. Chem. Soc. 113, 5474–5475. supplementary materials

Acta Cryst. (2008). E64, m1118 [doi:10.1107/S1600536808024379]

catena-Poly[[[diaquacopper(II)]-{#-4,4'-[1,4-phenylenebis(methyleneimino)]dibenzoato}] monohydrate]

Q. Wang and J. Ouyang

Comment

In recent years, 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications have become an area of interest owing to their various properties (Yamaguchi *et al.*, 1991; Imhof & Göbel, 2000). They are also used for building up supramolecular networks through hydrogen bonds (Jing *et al.*, 2006). Of special interest are the low-dimensional structural motifs related with highly anisotropic physical properties. Here we report the crystal structure of the title compound, (I).

For the title polymeric compound, (I), structure determination revealed a presence in the asymmetric unit of a half of centrosymmetric 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand, one Cu ion lies on the inversion ctnter, one coordinated water molecule locates on the twofold axis and one lattice water molecule locates in the general positon. The Cu ion is coordinated by six oxygen atoms with four of which from 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand and the other two from water moleculers into a distorted octahed-ral geometry (Table 1). The neighbouring Cu ions are linked by 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand to form an infinite plolymeric zigzag chain (Fig. 1). The amino groups of the ligand are involved in intramolecular N—H…O hydrogen bonds, wihle water molecules participate in formation of three-dimensional supramolecular framework via intermolecular O—H…O hydrogen bonds (Table 2).

Experimental

The 10 ml aqueous solution of $CuCl_2.2H_2O$ (0.855 g, 5 mmol) was droped into a 10 ml DMF soution of 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid (1.882 g, 5 mmol). The mixture was stirred for half an hour. The resultant solution was filtered, and the filtrate was allowed to stand at room temperature for one week, to generate blue block crystals.

Refinement

C-bound H atoms were geometrically positioned (C-H 0.93-0.97 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ Water H atoms were positioned geometrically with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. The N-bound H atom was located on a difference Fourier map, but placed in idealized position (N-H 0.84 Å) and refined as ridinh with $U_{iso}(H) = 1.5U_{eq}(N)$.

Figures

Fig. 1. A portion of the polymeric chain in (I) with the atom numbering and 30% probalility displacement ellipsoids [symmetry codes: (A) 2-*x*, 1-*y*, 2-*z*; (B) 1-*x*, -*y*, 2-*z*]

catena-Poly[[[diaquacopper(II)]-{µ-4,4'-[1,4- phenylenebis(methyleneimino)]dibenzoato}] monohydrate]

 $D_{\rm x} = 1.468 \text{ Mg m}^{-3}$ Mo *K* α radiation

 $F_{000} = 510$

Crystal data

[Cu(C₂₂H₁₈N₂O₄)(H₂O)₂]·H₂O $M_r = 491.98$ Monoclinic, *P*2/*c* Hall symbol: -P 2yc a = 16.127 (6) Å b = 5.1535 (17) Å c = 13.405 (8) Å β = 92.76 (2)° V = 1112.8 (8) Å³ Z = 2

$\lambda = 0.71073 \text{ Å}$ Cell parameters from 7833 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 291 (2) K Block, blue $0.09 \times 0.08 \times 0.07 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	2534 independent reflections
Radiation source: fine-focus sealed tube	2008 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 291(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -6 \rightarrow 6$
$T_{\min} = 0.913, T_{\max} = 0.932$	$l = -17 \rightarrow 16$
10220 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.140$
<i>S</i> = 1.03
2534 reflections
147 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0854P)^2 + 0.6974P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.49$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.0276 (6) 0.63113 (17) 0.1232 (5) 0.8986(2) C2 0.69938 (16) 0.1294 (5) 0.82720 (19) 0.0253 (5) C3 0.69767 (18) 0.0312 (6) -0.0493(6)0.7480(2)H3 0.6542 -0.16760.7419 0.037* C4 0.7583(2)-0.0552(7) 0.6790(2) 0.0383(7)H4 0.7554 -0.17290.046* 0.6264 C5 0.6898(2)0.0374(7) 0.82372 (19) 0.1176(7)Н5 0.6441 0.045* 0.8653 0.1143 C6 0.82859(18) 0.2944 (6) 0.7668(2)0.0333(6)H6 0.8733 0.4083 0.7724 0.040* C7 0.3050 (5) 0.0264 (5) 0.76652 (16) 0.8376(2) C8 0.83674 (18) 0.6789 (5) 0.9238(2)0.0328 (6) H8A 0.8186 0.8126 0.9687 0.039* H8B 0.8427 0.7584 0.8590 0.039* C9 0.92123 (18) 0.5803 (6) 0.9623 (2) 0.0287 (6) C10 0.9299 (2) 0.3842 (8) 1.0310 (3) 0.0506 (9) H10 0.061* 0.8826 0.3031 1.0530 C11 0.9926 (2) 0.6965 (7) 0.9314 (3) 0.0484 (9) H11 0.9888 0.8303 0.8848 0.058* Cu1 0.5000 0.0000 1.0000 0.02769 (18) N1 0.77292 (15) 0.4809 (5) 0.91439 (19) 0.0326 (5) H10.7305 0.4913 0.9484 0.049* 01 0.56996 (16) -0.2511 (5) 1.07956 (19) 0.0517 (6) H1A 1.0447 0.062* 0.5868 -0.3765H1B 0.5446 -0.3136 1.1282 0.062* 02 0.57429 (13) -0.0498(4)0.0337 (5) 0.88572 (16) O3 0.62970(13) 0.2785 (4) 0.97072 (15) 0.0371 (5) 04 0.5000 0.0450 (8) 0.5811 (7) 0.7500 H4A 0.5284 0.6994 0.7798 0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0219 (13)	0.0338 (14)	0.0275 (14)	0.0043 (11)	0.0040 (10)	0.0018 (11)
C2	0.0218 (13)	0.0306 (14)	0.0237 (13)	0.0036 (10)	0.0039 (10)	0.0019 (10)
C3	0.0263 (14)	0.0380 (15)	0.0293 (15)	0.0004 (11)	0.0023 (11)	-0.0025 (11)
C4	0.0366 (17)	0.0494 (18)	0.0294 (15)	0.0018 (14)	0.0073 (12)	-0.0090 (12)
C5	0.0325 (16)	0.0504 (18)	0.0303 (15)	0.0016 (14)	0.0114 (12)	0.0013 (13)
C6	0.0259 (14)	0.0403 (16)	0.0345 (15)	-0.0032 (12)	0.0080 (11)	0.0032 (12)
C7	0.0222 (13)	0.0308 (13)	0.0264 (13)	0.0051 (10)	0.0016 (10)	0.0035 (10)
C8	0.0263 (14)	0.0307 (14)	0.0410 (16)	0.0006 (11)	-0.0027 (11)	-0.0008 (12)
C9	0.0269 (14)	0.0273 (12)	0.0318 (14)	-0.0003 (11)	0.0005 (11)	-0.0023 (11)
C10	0.0249 (16)	0.057 (2)	0.070 (2)	-0.0083 (15)	0.0041 (15)	0.0301 (18)
C11	0.0311 (16)	0.053 (2)	0.061 (2)	-0.0044 (15)	0.0001 (15)	0.0326 (17)
Cu1	0.0237 (3)	0.0304 (3)	0.0297 (3)	-0.00293 (19)	0.00892 (18)	-0.00458 (18)
N1	0.0225 (12)	0.0392 (14)	0.0365 (13)	-0.0030 (10)	0.0055 (10)	-0.0070 (10)
O1	0.0498 (15)	0.0521 (14)	0.0537 (15)	0.0052 (12)	0.0086 (12)	-0.0021 (11)
O2	0.0267 (10)	0.0391 (11)	0.0361 (11)	-0.0065 (8)	0.0102 (8)	-0.0065 (8)
O3	0.0335 (11)	0.0444 (12)	0.0346 (11)	-0.0045 (9)	0.0133 (8)	-0.0111 (9)
O4	0.048 (2)	0.0425 (16)	0.0444 (19)	0.000	0.0024 (15)	0.000

Geometric parameters (Å, °)

C1—O3	1.257 (3)	C9—C10	1.370 (4)
C1—O2	1.284 (4)	C9—C11	1.379 (4)
C1—C2	1.493 (4)	C10—C11 ⁱ	1.389 (5)
C2—C3	1.405 (4)	C10—H10	0.9300
C2—C7	1.413 (4)	C11—C10 ⁱ	1.389 (5)
C3—C4	1.378 (4)	C11—H11	0.9300
С3—Н3	0.9300	Cu1—O1 ⁱⁱ	1.992 (3)
C4—C5	1.383 (5)	Cu1—O1	1.992 (3)
C4—H4	0.9300	Cu1—O2	2.006 (2)
C5—C6	1.376 (4)	Cu1—O2 ⁱⁱ	2.006 (2)
С5—Н5	0.9300	Cu1—O3	2.582 (2)
C6—C7	1.413 (4)	Cu1—O3 ⁱⁱ	2.582 (2)
С6—Н6	0.9300	Cu1—C1 ⁱⁱ	2.646 (3)
C7—N1	1.372 (4)	N1—H1	0.8420
C8—N1	1.450 (4)	O1—H1A	0.8500
C8—C9	1.521 (4)	O1—H1B	0.8500
C8—H8A	0.9700	O4—H4A	0.8500
C8—H8B	0.9700		
O3—C1—O2	120.4 (3)	C9—C11—C10 ⁱ	120.7 (3)
O3—C1—C2	121.4 (3)	C9—C11—H11	119.7
O2—C1—C2	118.2 (2)	C10 ⁱ —C11—H11	119.7
C3—C2—C7	118.8 (2)	O1 ⁱⁱ —Cu1—O1	180.00 (13)
C3—C2—C1	118.8 (2)	O1 ⁱⁱ —Cu1—O2	91.02 (10)

C7—C2—C1	122.4 (2)	O1—Cu1—O2	88.98 (10)
C4—C3—C2	122.2 (3)	O1 ⁱⁱ —Cu1—O2 ⁱⁱ	88.98 (10)
С4—С3—Н3	118.9	O1—Cu1—O2 ⁱⁱ	91.02 (10)
С2—С3—Н3	118.9	O2—Cu1—O2 ⁱⁱ	180.000 (1)
C3—C4—C5	118.5 (3)	O1 ⁱⁱ —Cu1—O3	89.98 (10)
C3—C4—H4	120.7	O1—Cu1—O3	90.02 (10)
С5—С4—Н4	120.7	O2—Cu1—O3	55.75 (7)
C6—C5—C4	121.4 (3)	O2 ⁱⁱ —Cu1—O3	124.25 (7)
С6—С5—Н5	119.3	O1 ⁱⁱ —Cu1—O3 ⁱⁱ	90.02 (10)
С4—С5—Н5	119.3	O1—Cu1—O3 ⁱⁱ	89.98 (10)
C5—C6—C7	120.8 (3)	O2—Cu1—O3 ⁱⁱ	124.25 (7)
С5—С6—Н6	119.6	O2 ⁱⁱ —Cu1—O3 ⁱⁱ	55.75 (7)
С7—С6—Н6	119.6	O3—Cu1—O3 ⁱⁱ	180.0
N1—C7—C6	120.0 (3)	O1 ⁱⁱ —Cu1—C1 ⁱⁱ	89.14 (10)
N1—C7—C2	121.8 (2)	O1—Cu1—C1 ⁱⁱ	90.86 (10)
С6—С7—С2	118.3 (2)	O2—Cu1—C1 ⁱⁱ	152.03 (9)
N1—C8—C9	114.5 (2)	O2 ⁱⁱ —Cu1—C1 ⁱⁱ	27.97 (9)
N1—C8—H8A	108.6	O3—Cu1—C1 ⁱⁱ	152.22 (7)
С9—С8—Н8А	108.6	O3 ⁱⁱ —Cu1—C1 ⁱⁱ	27.78 (7)
N1—C8—H8B	108.6	C7—N1—C8	123.9 (2)
С9—С8—Н8В	108.6	C7—N1—H1	114.5
H8A—C8—H8B	107.6	C8—N1—H1	120.0
C10—C9—C11	117.6 (3)	Cu1—O1—H1A	112.8
С10—С9—С8	122.3 (3)	Cu1—O1—H1B	112.1
С11—С9—С8	120.0 (3)	H1A—O1—H1B	108.2
C9—C10—C11 ⁱ	121.7 (3)	C1—O2—Cu1	104.92 (17)
С9—С10—Н10	119.1	C1—O3—Cu1	78.92 (16)
C11 ⁱ —C10—H10	119.1		

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
N1—H1…O3	0.84	2.00	2.676 (3)	137
O1—H1A···O3 ⁱⁱⁱ	0.85	2.17	3.011 (3)	174
O1—H1B···O4 ⁱⁱ	0.85	2.28	3.104 (3)	164
O4—H4A···O2 ^{iv}	0.85	2.03	2.855 (3)	163

Symmetry codes: (iii) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*, -*z*+2; (iv) *x*, *y*+1, *z*.

